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A NOTE TO 259 STUDENTS: 
 
Interrupts involve a lot of details. 
 
The details presented after this page provide further background on exactly what 
happens at the CPU logic and assembly code levels. This may better help you 
understand the previous pages, as they define exactly how interrupts work. It may 
also help you understand how use interrupts in assembly code for your project. 
However, I will not test you on this material specifically – it is too detailed, and it is 
best left as a reference manual that you consult during a project (not during an 
examination). 
 
I expect you to understand everything discussed prior to this page. In particular: 
 
From 259library.c: 
 
initInterrupts(); // clears history of all registered ISRs with IRQs, disables each specific device interrupt, 
enables CPU to receive interrupts 
 
enableInterrupts(); // interrupts can be received by CPU from any specific device interrupt that is enabled 
disableInterrupts(); // CPU ignores all interrupts 
 
enableInterrupt( IRQ_NUM );  // enables specific device interrupt to be received by CPU 
disableInterrupt( IRQ_NUM ); // CPU ignores specific device interrupt 
 
registerISR( IRQ_NUM, ISR_name ); // registers ISR_name with IRQ_NUM; interrupts received from 
IRQ_NUM will cause ISR_name() to be called for service 
 
You need to know the purpose of these functions and how to use them. 
 
You do not need to know the source code for these functions (although it is provided in 259library.c, and 
reading it may help you understand things better). 
 
From example code (irq-example.c, irq-example2.c): 
 
enableCounterIRQ( delay_amount, counterISR ); 
enableKeyIRQ( keymask, keyISR ); 
 
You need to know the purpose of these functions and how to use them. 
 
You need to be familiar with the internal details of these functions, but you do not need to memorize the 
internal details. If needed, I will provide (most of the) internal details on a test, but may leave blank 
sections. You may be asked to explain, alter, or fill in the internal details. 
 
------------- 
 
I cannot guarantee that quiz/exam question(s) on interrupts will be exactly like the Lecture Quiz. 
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Nios II CPU Interrupt Details 
 
The Nios II CPU actually has 32 interrupt pins. These can be wired up in many ways in a 
computer system; the precise wiring assignment used for the UBC DE1 Media computer 
was already given earlier. These hardware interrupt request pins are inputs to the CPU, 
and appear internally in the CPU as irq0, irq1, …, irq31 as shown in Figure 4. 
 
A 32-bit CPU register called ienable is used to mask interrupts. This value is ANDed 
with the set of 32 interrupt input pins. Therefore, individual interrupts with the 
corresponding ienable bit set to 0 are ignored and not be seen by the CPU. Setting 
ienable bits to 1 allows the CPU to receive interrupts from the corresponding device. 
 
The current status of all interrupts is stored in another 32-bit CPU register called ipending. 
Reading this register allows a program to determine which specific interrupt has occurred. 
For bit N in ipending to be set, the corresponding Nth bit in ienable must be 1, and the 
corresponding irqN pin must also be set to 1. 
 
After ipending, a wide OR gate combines all of the 32 ipending bits. This generates a 
single (combined) interrupt-request which is sent to the CPU. If any bit in ipending is a 1, 
then an interrupt-request will be sent to the CPU. 
 
Finally, the CPU can choose to ignore the interrupt-request bit using single AND gate. 
This bit, called the PIE bit, is located in bit position 0 of another 32-bit CPU register 
called status. All interrupts (and exceptions) can be masked or disabled if this bit is a 0. If 
the PIE bit is a 1, and the interrupt-request signal is a 1, then a CPU interrupt is produced. 
 

 

Figure 4. Hardware interrupt structure inside the Nios II CPU (from Fig 3-2 in [1]) 
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The PIE bit can be modified by: 
disableInterrupts(); 
enableInterrupts(); 
initInterrupts(); 

Individual bits in the ienable 
register are modified by: 
disableInterrupt( irq_num ); 
enableInterrupt( irq_num ); 
 
All bits in the ienable reg. 
are cleared by: 
initInterrupts(); 
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Special Nios II Registers 
 
You already know about the 32 general-purpose registers, r0 to r31 listed in Figure 5.  
Notice the special names given to some registers, in particular: 

• r24 or et, exception temporary – do not use this register in your main program! 
• r29 or ea, exception return address 

 
 

Figure 5. General-purpose Nios II registers (from Table 3-5 in [1]). 
 
In addition, there are up to 32 special control registers, ctl0 to ctl31, listed in Figure 6. 
These registers have names corresponding to their specialized purpose. We will use: 

ctl0 or status   ctl3 or ienable 
ctl1 or estatus   ctl4 or ipending 

These are accessed using only the specialized instructions rdctl and wrctl. For example: 
• rdctl r24, ctl1   or rdctl  et, estatus copy estatus value to r24 
• rdctl r8, ctl4   or rdctl  r8, ipending copy ipending value to r8 
• wrctl ctl0, r0   or wrctl status, r0  copy r0 to status (disables interrupts) 
• wrctl ctl3, r13   or wrctl  ienable, r13 copy r13 to ienable 

 
Register Name Description 
ctl0 status Bit 0 is the PIE (processor interrupt enable) bit 
ctl1 estatus Holds a copy of status after exception handler is called 
ctl2 bstatus Used by debugger 
ctl3 ienable Interrupt enable bits 
ctl4 ipending Interrupt pending bits 
ctl5 CPUid Unique processor identifier 
ctl6 – ctl31 …etc… Some of ctl7 to ctl15 are defined, rest are reserved 
Figure 6. Special-purpose Nios II control registers (from Table 3-6 in [1]). 
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Interrupts and Exceptions 
 
Interrupts are generated by hardware devices. However, software can also generate an 
interrupt-like event called an exception. Exceptions are a generalization of interrupts: 

• Hardware interrupts are generated by devices 
• Software exceptions are generated by software instructions 

Exceptions refer to both hardware interrupts and software-generated exceptions.  
 
Just like an interrupt, an exception event can occur at any time. When it does occur, the 
CPU will momentarily stop running your program, go and run another short program 
called an exception handler to completion, and then return to your program. You can 
think of an exception handler as a special type of subroutine that is not called directly by 
your program – the CPU decides when to call it by examining specific hardware events 
that occur in a computer system (interrupts) or in the CPU (software exceptions). It is the 
exception handler that decides which hardware interrupt service routine to call. 
 
Exceptions can also be triggered when the processor tries to execute specific instructions. 
 
In the Nios II CPU, some complicated instructions like integer multiply or integer divide 
can be left out of the hardware when the system is generated. If the CPU encounters one 
of these unimplemented instructions, it triggers an unimplemented instruction exception. 
This allows software to emulate the missing instruction by replacing it with a short 
software routine that achieves the same result (eg, it executes a multiply instruction by 
emulating it with a software exception because the hardware multiplier was omitted from 
the CPU). 
 
Nios II can also trigger exceptions on data-dependant events with certain instructions. 
Common data-dependant exceptions are when an instruction attempts to divide by 0, or 
when load or store word or halfword is given an unaligned address which is not a 
multiple of 4 or 2, respectively, or when attempting to load or store to a memory address 
that does not exist in the computer system. In most of these situations, the Nios II CPU 
can be configured to behave in a variety of ways: it can generate exceptions, or it can 
execute the bad instruction but produce an undefined result. An undefined result means 
that the CPU result or operation is not reliable or predictable. 
 
Not all exceptions are bad. In complex CPUs, the virtual memory system will often 
trigger an exception when you try to access a memory region that was swapped to disk. 
The exception forces the operating system to run momentarily, which fetches the data 
from disk and places it in memory, and then resumes your program. This activity is 
known as demand paging, and it is quite common in full systems (like Windows). 
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Examples of Nios II Exceptions and Interrupts 
 
The Nios II has many different exception types. Here are a few of the common ones: 
 

• Interrupt exception (highest priority) 
• Trap exception 
• Illegal instruction exception 
• Unimplemented instruction exception 
• Break exception 
• Misaligned data address exception 
• Division error exception (lowest priority) 
 

Interrupts are often treated as a hardware exception, while the others are considered 
software exceptions because they are usually triggered by specific instructions. 
 
The trap exception is generated whenever the special CPU instruction named trap is 
executed. This allows the user program to “call” the operating system. In our case, there 
is no operating system, so we do not use this instruction. 
 
The illegal instruction exception is generated whenever the CPU encounters an 
instruction (a 32-bit pattern) that is unknown. 
 
The unimplemented instruction exception is generated whenever a legal instruction, such 
as integer multiply or divide, is encountered that is not implemented in CPU hardware. 
These instructions must be emulated using software. 
 
The break exception is used exclusively by the debugger. There is even a specialized 
CPU instruction named break. We do not use this exception or this instruction in our 
programs, as it will interfere with debugger operation. 
 
The misaligned data address exception is generated when you use ldw, stw, ldwio, or 
stwio with an address that is not a multiple of 4. It is also generated when you use 
halfword load and store instructions with an odd address. 
 
The division error exception is generated when a program attempts to divide by zero, or it 
attempts to signed division between the largest negative number (-2147483648) and -1, 
producing a result that is out of range. 
 
The Nios II is a flexible CPU. The computer system designer has the choice of omitting 
many of these exceptions from the CPU. In the UBC DE1 Media computer, only the 
underlined events listed above will generate an exception. 
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Detailed Nios II Exception Process 
 
When an exception is triggered, the CPU does the following steps automatically: 

1. Copy the contents of status to estatus to save pre-exception state 
2. Clear (0) PIE bit of status to ensure further exceptions are now disabled 
3. Modify r29 aka ea to hold the return address of the instruction immediately after 

the one being interrupted 
4. Start running the exception handler program at the predefined address 

(0x00000020) 
 
When the exception ends, the exception handler must use the special eret instruction to 
automatically and properly end the exception process: 

5. Copy estatus back to status to restore the pre-exception state 
6. Return to running the regular program at the address stored in ea 

 
Your Program 
 
To use interrupts and exceptions, your program must include the following: 

A. An exception handler 
B. An interrupt service routine for each interrupt source you enable 
C. A setup routine to initialize the entire interrupts subsystem 

 
A) Your exception handler must: 

1. Save registers on the stack 
2. Determine the cause of the exception according to the priority order 
3. For hardware interrupts, adjust the return address in ea by subtracting 4 
4. Call the appropriate interrupt service routine or exception service routine 

• Loop to call ISR associated for each hardware IRQ in ipending 
5. Restore registers from the stack 
6. Return to the main program using the instruction eret 

 
B) Your interrupt service routine must: 

1. Clear the cause of the exception or interrupt so it will not occur again (eg, tell the 
device to stop sending the interrupt) 

2. Do the appropriate action for the interrupt (eg, read the character received from 
the serial port) 

3. Change the state of the system (ie, modify memory to alter behaviour of system) 
4. Return to the exception handler using ret 

 
C) Your main program or setup routine must: 

1. Place the exception handler in memory at address 0x00000020. 
2. Enable the use of the stack 
3. Specifically enable device to send interrupts (eg: ps2, timer) 
4. Specifically enable CPU to receive interrupts from the device (ienable) 
5. Enable CPU interrupts by setting PIE bit to 1 (i.e. set bit 0 in status to a 1) 
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Countdown Timer Device 
 
The COUNTER device you have used to measure time so far always counts up by 1 
every clock cycle, and it uses irq3. There is another device, the TIMER, which allows 
you to count down. It is also more complex than the COUNTER device, allowing you 
START and STOP the timer – a useful feature. 
 
When the countdown TIMER reaches 0, it can generate an interrupt on irq0 and on the 
next cycle reload itself with a new starting value. You can set the starting value to any 
number you choose. This results in very predictable, periodic interrupts. This is great for 
controlling time-sensitive devices without polling! 
 
Programming the TIMER is a little bit difficult because it uses a 16-bit interface for 32-
bit values as shown in Figure 5. The base address for the timer is ADDR_TIMER. The 
names of individual registers such as TIMER_STATUS and TIMER_VALUE_LOW 
shown below are all offsets relative to IOBASE. 
 
You can read or write halfwords or words to the individual register addresses, but only 
the lower 16 bits have meaning with word accesses. The individual bits of each address 
have different meanings and names as follows: 

• TO, or bit 0 of TIMER_STATUS, provides a timeout signal which is set to 1 by 
the timer when it has reached a count value of 0. The TO bit can be cleared by 
writing a 0 to it.  

• RUN, or bit 1 of TIMER_STATUS, is set to 1 by the timer whenever it is 
currently counting. Writing to TIMER_STATUS does not affect the value of the 
RUN bit. 

• ITO, or bit 0 of TIMER_CONTROL, enables the device to send interrupts to the 
processor whenever TO becomes 1. These will be received by the processor on 
irq0. Note: to clear interrupts sent by the timer, write a 0 to the TO bit above. 

• CONT, or bit 1 of TIMER_CONTROL, controls whether the timer stops after 
counting down to 0 (CONT=0) or continues by reloading (CONT=1). 

• START and STOP, or bits 2 and 3 of TIMER_CONTROL, can be used to 
commence/suspend the operation of the timer by writing a 1 to the respective bit. 

 
The values written to TIMER_START_LOW and TIMER_START_HIGH allow the 
period of the time to be changed. This is the value that is reloaded into the counter after it 
tries to count below 0 (when CONT=1). Since the registers are only 16 bits, you must 
break up a 32-bit value (such as 100,000 for 2 milliseconds) into the high and low parts 
with shift and AND instructions and write them separately. 
 
It is possible to capture a snapshot of the counter value at any time by performing a write 
(store instruction) to the TIMER_VALUE_LOW address. After the snapshot, you can 
read out the value by reading both TIMER_VALUE_LOW and TIMER_VALUE_HIGH 
and building the corresponding 32-bit value with shift and OR instructions. 
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Figure 5. Countdown timer device registers. 
 
 
Interrupt Example – Assembly Language using Countdown Timer 
 
The assembly language example on the next 2 pages shows how to configure and use 
timer interrupts every 100ms.  
 
Each interrupt is counted by incrementing the memory location interrupt_counts and 
displaying the count on LEDG. The main program continuously copies SWITCH to 
LEDR, acting as a wire. Notice the main program and interrupt service routine both 
communicate using r8 without any problems. 

TIMER_STATUS 
 TIMER_CONTROL 
 
TIMER_CONTROL 
 
TIMER_START_LOW 
 TIMER_START_HIGH 
 
TIMER_VALUE_LOW 
 
TIMER_VALUE_HIGH 
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.include "ubc-de1media-macros.s" 
 
/***************************************************************************** 
 * RESET SECTION 
 * The Nios II assembler/linker places this section at address 0x00000000. 
 * It must be <= 8 real NiosII instructions. This is where the CPU starts 
 * at "powerup" and on "reset". 
 */ 
.section .reset, "ax" 
  movia sp, STACK_END  /* initialize stack */ 
  movia ra, _start 
  ret    /* jump to _start */ 
 
/***************************************************************************** 
 * EXCEPTIONS SECTION 
 * The Nios II assembler/linker places this section at addresss 0x00000020. 
 */ 
.section .exceptions, "ax" 
 
exception_handler: 
  addi sp, sp, -12   /* save used regs on stack */ 
  stw r8, 0(sp) 
  stw r9, 4(sp) 
  stw ra, 8(sp) 
 
  /* Check if interrupts were enabled by examining the EPIE bit. */ 
  /* EPIE is bit0 of estatus, a copy of PIE before the exception */ 
  rdctl et, estatus 
  andi et, et, 1 
  beq et, r0, check_software_exceptions 
  /* interrupts are enabled, check if any are pending */ 
  rdctl et, ipending 
  beq et, r0, check_software_exceptions 
 
check_hardware_interrupts: 
  /* upon return, execute the interrupted instruction */ 
  subi ea, ea, 4 
  /* should check interrupts one-at-a-time, from irq0 to irq31 */ 
  /* each time the ipending bit is set, we should call the proper ISR */ 
  /* since we are only expecting irq0, we will only check for it */ 
  andi et, et, 0x1 
  beq et, r0, check_next_interrupt 
 
  call timer_isr  /* ISR uses r8, r9, and ‘call’ uses ra */ 
 
check_next_interrupt: 
 /* no more interrupts to check */ 
 
check_software_exceptions: 
 /* no software exceptions supported */ 
 /* they should be checked in priority order (trap, break, unimplemented) */ 
 
done_exceptions: 
  ldw ra, 8(sp)   /* restore used regs from stack */ 
  ldw r9, 4(sp) 
  ldw r8, 0(sp) 
  addi sp, sp, 12 
  eret 
/* Nios II exception priorities are defined as follows: 
 * 1) hardware interrupt exceptions 
 *  a) irq 0 (highest interrupt priority) 
 *  b) irq 1, ..., irq30 (again, listed higher to lower priority) 
 *  c) irq 31 (lowest interrupt priority) 
 * 2) software exceptions 
 *  a) trap exception 
 *  b) break exception 
 *  c) unimplemented instruction 
 * We implement these priorities by checking the cause of the exception 
 * in the same order in the exception handler above. 
 */ 

Example: Count every 100ms on LEDG; no communication with main program. 
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/***************************************************************************** 
 * TEXT SECTION 
 * The Nios II assembler/linker should put the .text section after the .exceptions. 
 * You may need to configure the Altera Monitor Program to locate it at address 0x400. 
 */ 
 
.text 
.global _start 
 
_start: 
  movia r23, IOBASE 
  movia sp, STACK_END   /* make sure stack is initialized */ 
 
  movia r4, interrupt_counts 
  stw r0, 0(r4) 
 
  movia r4, 100*50000 /* # of timer cycles in 100ms */ 
  call setup_timer_interrupts 
  call setup_cpu_interrupts 
 
loop:  ldwio r8, SWITCH(r23) 
  stwio r8, LEDR(r23) 
  br loop 
 
 
timer_isr: 
 /* every interval, increment 'interrupt_counts' and display on LEDG */ 
  /* clear source of interrupt by writing 0 to TO bit */ 
  stwio r0, TIMER_STATUS(r23) 
 
  /* process the interrupt, change state of system */ 
  movia r9, interrupt_counts 
  ldw r8, 0(r9) 
  addi r8, r8, 1 
  stw r8, 0(r9) 
  stwio r8, LEDG(r23)  /* show count on LEDG */ 
 
  /* return from ISR */ 
  ret 
 
setup_timer_interrupts: 
 /* set up timer to send interrupts */ 
 /* parameter r4 holds the # cycles for the timer interval */ 
 
  /* set the timer period */ 
  andi  r2, r4, 0xffff  /* extract low halfword */ 
  stwio  r2, TIMER_START_LOW(r23) 
  srli  r2, r4, 16  /* extract high halfword */ 
  stwio  r2, TIMER_START_HIGH(r23) 
 
  /* start timer (bit2), count continuously (bit1), enable irq (bit0) */ 
  movi  r2, 0b0111 
  stwio  r2, TIMER_CONTROL(r23) 
 
  ret 
 
setup_cpu_interrupts: 
 /* set up CPU to receive interrupts from timer */ 
  movi  r2, 0x01 /* bit0 = irq0 = countdown timer device */ 
  wrctl  ienable, r2 
  movi  r2, 1  /* bit0 = PIE */ 
  wrctl  status, r2 
  ret    /* first instr. that may be interrupted */ 
 
.data 
interrupt_counts: 
.word 0 
 
.end 
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Communication between ISR and Regular Program 
 
One of the most difficult things to get correct is the communication between your ISR 
and the regular part of your program. There are two basic methods of communicating: 

1) By modifying specific registers 
2) By modifying memory 

Using registers is easiest, but it is really a shortcut and there are still some hidden 
difficulties. Using memory is the proper method, and the only way available from C 
language. However, it was already discussed earlier and will not be repeated here. 
 
To use registers for communication, you must use assembly language. You must 
decide ahead of time which specific register will be dedicated for the communication. 
The communicating register must not be saved/restored by the exception handler. 
 
In the second example assembly program (ABS brake controller), the program counts 
how many times the wheel spins (KEY3 goes from 0 to 1) by incrementing r22. The ISR 
inspects r22 to see if it should apply the brakes (frequent spins) or pulse them (infrequent 
spinning indicates a locked wheel). When the ISR exits, it resets r22 to 0. This 
communication is safe because all instructions that modify r22 behave atomically (the 
modifying instruction either completely executes, or is interrupted before executing). 
 
It is also important that we dedicated r22 to the task, and not a register that sometimes has 
another purpose. For example, suppose we chose to use r2 – after all, it is often used by 
subroutines to return a value. If the main program contains subroutines, they would also 
use r2 to return some value. Usually, the subroutine would return the correct value. 
However, sometimes the ISR will interrupt the subroutine just before returning; the ISR 
resets r2 to 0, causing the subroutine to return the wrong value. 
 
If you communicate using registers (not memory), it is still necessary to protect critical 
sections. In the example below, a shared variable is placed in register r22. The main 
program has a problem because it reads r22 in one place (the blt instruction) and then 
modifies it in another (the addi or movi instructions). Using separate instructions to read 
and modify the register is what causes the problem; protect this by disabling interrupts 
before the read, and re-enabling interrupts after the modify. 
MainBuggy: blt r22, r8, resetR22 
  addi r22, r22, 1 
  br done 
resetR22: movi r22, 0 
done:  ... 

Identifying and protecting critical sections correctly is a difficult task. You will spend a 
lot of time on this topic next year in your Operating Systems course (eg, EECE 314 / 315). 
 
References 
[1] Nios II Processor Reference Handbook, especially early pages in Chapter 3. 
[2] Nios II Software Developer’s Handbook, especially Chapter 8. 
[3] Altera DE1 Media Computer manual 
You can download [1] and [2] from http://www.altera.com in the Literature section. 
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.include "ubc-de1media-macros.s" 
 
/***************************************************************************** 
 * RESET SECTION 
 * The Nios II assembler/linker places this section at address 0x00000000. 
 * It must be <= 8 real NiosII instructions. This is where the CPU starts 
 * at "powerup" and on "reset". 
 */ 
.section .reset, "ax" 
  movia sp, STACK_END  /* initialize stack */ 
  movia ra, _start 
  ret    /* jump to _start */ 
 
/***************************************************************************** 
 * EXCEPTIONS SECTION 
 * The Nios II assembler/linker places this section at addresss 0x00000020. 
 */ 
.section .exceptions, "ax" 
 
exception_handler: 
  addi sp, sp, -12   /* save used regs on stack */ 
  stw r8, 0(sp) 
  stw r9, 4(sp) 
  stw ra, 8(sp) 
 
  /* Check if interrupts were enabled by examining the EPIE bit. */ 
  /* EPIE is bit0 of estatus, a copy of PIE before the exception */ 
  rdctl et, estatus 
  andi et, et, 1 
  beq et, r0, check_software_exceptions 
  /* interrupts are enabled, check if any are pending */ 
  rdctl et, ipending 
  beq et, r0, check_software_exceptions 
 
check_hardware_interrupts: 
  /* upon return, execute the interrupted instruction */ 
  subi ea, ea, 4 
  /* should check interrupts one-at-a-time, from irq0 to irq31 */ 
  /* each time the ipending bit is set, we should call the proper ISR */ 
  /* since we are only expecting irq0, we will only check for it */ 
  andi et, et, 0x01 
  beq et, r0, check_next_interrupt 
 
  call timer_isr  /* ISR uses r8, r9, and ‘call’ uses ra */ 
 
check_next_interrupt: 
 /* no more interrupts to check */ 
 
check_software_exceptions: 
 /* no software exceptions supported */ 
 /* they should be checked in priority order (trap, break, unimplemented) */ 
 
done_exceptions: 
  ldw ra, 8(sp)   /* restore used regs from stack */ 
  ldw r9, 4(sp) 
  ldw r8, 0(sp) 
  addi sp, sp, 12 
  eret 
 
 
/***************************************************************************** 
 * TEXT SECTION 
 * The Nios II assembler/linker should put the .text section after the .exceptions. 
 * You may need to configure the Altera Monitor Program to locate it at address 0x400. 
 */ 
 
.text 
.global _start 
 
_start:  movia r23, IOBASE 
  movia sp, STACK_END  /* make sure stack is initialized */ 

Example: ABS Brake Controller – toggle LEDG0 if KEY3 is infrequent. 
ISR and main program communicate using register r22. 
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  movia r4, brake_flag 
  stw r0, 0(r4)  /* initially, turn brake OFF */ 
  movi r22, 0   /* initialize KEY3 counter = 0 */ 
 
  movia r4, 100*50000  /* # of timer cycles in 100ms */ 
  call setup_timer_interrupts 
  call setup_cpu_interrupts 
 
loop:  stwio r22, LEDR(r23)  /* display current KEY3 counter */ 
  ldwio r16, KEY(r23) 
  andi r16, r16, 8 /* KEY3 */ 
  bne r16, r0, loop  /* wait for KEY3 to become 0 */ 
 
while0:  stwio r22, LEDR(r23)  /* display current KEY3 counter */ 
  ldwio r16, KEY(r23) 
  andi r16, r16, 8 /* KEY3 */ 
  beq r16, r0, while0 /* wait for KEY3 to become 1 */ 
 
  /* count the 0-to-1 transition */ 
  addi r22, r22, 1 
  br loop 
 
timer_isr: 
 /* every 100ms, adjust brake_flag and display it on LEDG */ 
  /* clear source of interrupt by writing 0 to TO bit */ 
  stwio r0, TIMER_STATUS(r23) 
  /* process the interrupt */ 
  movia r8, brake_flag  /* read old brake state */ 
  ldw r9, 0(r8) 
 
  movi r8, 5 
  blt r22, r8, brakePULSE /* if KEY3 pressed < 5 times, pulse brake */ 
brakeON: movi r9, 0   /* turn brake off (invert turns it ON) */ 
brakePULSE: xori r9, r9, 1  /* invert state of brake to pulse it */ 
 
  /* change state of the system */ 
  movia r8, brake_flag  /* remember new brake state */ 
  stw r9, 0(r8) 
  stwio r9, LEDG(r23)  /* show current brake signal to LEDG[0] */ 
  mov r22, r0   /* reset KEY3 counter every second */  
  /* return from ISR */ 
  ret 
 
setup_timer_interrupts: 
 /* set up timer to send interrupts */ 
 /* parameter r4 holds the # cycles for the timer interval */ 
 
  /* set the timer period */ 
  andi  r2, r4, 0xffff  /* extract low halfword */ 
  stwio  r2, TIMER_START_LOW(r23) 
  srli  r2, r4, 16  /* extract high halfword */ 
  stwio  r2, TIMER_START_HIGH(r23) 
 
  /* start timer (bit2), count continuously (bit1), enable irq (bit0) */ 
  movi  r2, 0b0111 
  stwio  r2, TIMER_CONTROL(r23) 
  ret 
 
setup_cpu_interrupts: 
 /* set up CPU to receive interrupts from timer */ 
  movi  r2, 0x01 /* bit0 = irq0 = countdown timer device */ 
  wrctl  ienable, r2 
  movi  r2, 1  /* bit0 = PIE */ 
  wrctl  status, r2 
  ret 
.data 
brake_flag: 
.word 0 
.end 


